which enters largely into the manufacture of the lacquer used for metal goods and hardware. Owing to the decrease in the importation of fusel oil, some chemists have been obliged to make lacquer which contains 40 per cent. of this solvent instead of 75 per cent., while others have succeeded in producing a mixture from other fluids. At the same time the American distilleries have succeeded in adding largely to their output of fusel oil.

The first solvent used in manufacturing artificial leather was amyl acetate, made from fusel oil. This so-called leather is a fabric coated with soluble cotton and other ingredients. When the price of fusel oil went up, the makers of the artificial leather, which is in demand for upholstering and automobiles, practically dropped the use of the oil and introduced other solvents as a result of experiments made for them by industrial chemists.

Much has been said about industrial preparedness, which, after all, is another manifestation of the power of war to search the weak spots of nations. The stress of providing munitions for the European conflict and the inquiries as to how far the United States was prepared to meet the issue should she be involved in war showed that, despite rosy statements about American efficiency, there was no solidarity among the great corporations of the country.

They could not have been called into service along the lines of industrial preparedness. It was the influence, therefore, of a conflict far from our shores which caused groups of manufacturers to become acquainted with the resources of one another.

Countless reforms in “shop practice” have been instituted on account of processes developed in the munition works of England, the foundries of France, and the chemical laboratories of Germany. American invention has been stimulated along many lines. The reports of the Patent Offce show that in 1915 alone sixty-eight machines were patented for the making of munitions. Without doubt the impetus given to mechanical and chemical processes of all kinds will be revealed to the full when the war is over and the ingenuity called into play will be required elsewhere.

Many new machines used in trade processes will be shown at the exposition, in addition to new chemical products. An idea of the exposition’s influence in practical and scientific circles may be gained by scanning the names of the Advisory Committee, which consists of Charles H. Herty, President of the American Chemical Society; Raymond F. Bacon of the Mellon Institute of Pittsburgh; L. H. Baedelen, Inventor of Bakelite and a well-known research chemist; Berhard C. Hesse, Consulting Chemist; A. D. Little, H. P. Perry, William Cooper Proctor, E. E. Roebber, George D. Roseno, T. B. Wagner, Ulyse Wedge, and M. C. Whitaker.